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ON THE DESIGN AND COMPARISON OF CI21TAIN 

DICHOTOHOUS EXPERIMENTS 

By 

Rusooll N. Bradt * 

1.  Introduction and Summary. 

It may frequently happen that a researcher, wishing to deelde which 

one of a set of alternatives to accept, finds that there are several 

experiments available to him which he might perform to guide him in 

reaching his decision. Thus, he is faced with making a preliminary deoiaion 

as to which experiment or experiments he is to perform. If he admits the 

possibility of performing more than one experiment, then the questions 

4 of how many, which ones, and in what order, arise. It is such questions 

that come under the heading of comparison and design of experiments. 

I In its most general formulation, a sample space, \,  is an ordered 

quadruple, (2.,t},Q,P), where Z is an arbitrary set, a? is a Borel field 

of subsets of Z, O. is an arbitrary set, and P is a funetion defined 

on ^xH with the property that for each ooeO, P^, the restriction 

of P to fe/i (w), is a probability measure on V. In this setting an 

experiment is a sub--3orel field of {$.    If d  is a Bore] field of subsets 

of a set V and T is a £f - $ measurable function from Z to W, then T is a 

random variable and 

*?T - -JBfc$: for some ttd , B - (*:    T(s)£E^j 

is a sub-Borel field of \$.     fyl is called the experiment associated 

4 4 with the random variable T. Keeping in mind that many random variables 

may be associated with the same experiment, and therefore to view an 



hypothesis is chosen while no loss occurs if the true one i3 chosen. 

Further, %  will denote the a priori probability that B_ is true and the 

criterion to be used in comparing experiments will be the Bayes risks 

associated with the various experiments. 

In Section 2 it is supposed that there are two experiments, i.e., 

random variables, Z and I available and that but one experiment is allowed. 

Some conditions for uniform inequalities between the Bayes risk associated 

with X and that associated with I are obtained. Certain relations between 

the Kullbach-Leibler information numbers for X and for X and their Bayes 

risks are shown. In particular, it is found that a necessary condition 

that one random variable have a Bayes risk uniformly less or equal that of 
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experiment as a sub-Borel field is th* more basic approach, no confusion 

will result in this paper from identifying random variable with experiment. • 

i 
Since the random variables dealt with in this paper are all real 

valued, to say that an experiment is available to the researcher is to say 

that there is a real random variable which he can observe and whose distri- 
i 

bution is known for each co&O. 

While muoh of the general theory of th. lesign problem has been 
r 
i 

developed, e.g., by laid [1] and Hagwire [21, actual solutions of particular 

problems, especially of the sequential type, have not been obtained. This 

paper stems from work towards solving the design problem for particular 

cases. Attention is restricted to dichotomous experiments; i.e., ills 

assumed to contain but two elements which will be called hypothesa * and 

denoted by E, and iL,. It is supposed that one is required to decide which j 

hypothesis is true and that a loss of one unit is suffered if the false 
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the other is that its Kulibach-Leibler information numbers are greater or 

equal those for the other. The case in which the distributions ere normal 

is discussed in some detail and a few remarks are addressed to the matter 

of Tiewing the Kullbaeh-Leibler information numbers, in certain special cases, 

as functions of that transformation, t, such that the distribution of t(l) 

under H, is the distribution of Z under Ep. 

Section 3 is devoted to the problem of designs in the ease of binomial 

distributionse It is supposed that the two experiments available, X and I, 

are independent and of equal cost, and that it ia given that a total of 

n experiments is to be performed. Two problems are discussed: What is 

the best division of the n experiments between X's and T's if one is to 

decide this matter before experimentation? What is the best sequential 

design, i.e., the best rule prescribing, aa a function of the results of 

the preceding experiments, which random variable to observe in the next 

experiment. 

In Section U>  instead of considering the performance of a fixed 

number of experiments, the experimentation is supposed terminated by a 

particular sequential stopping rule and one is interested in discovering 

sequential designs which minimize the expected number of experiments that 

will be performed. 

In the final section, 5» a somewhat different purpose of experimen- 

tation is introduced. Again, X and I are two real random variables with 

known distributions undor the xwo hypotheses, a total of n experiments is 

allowed and a sequential design, telling which random variable to observe 

at each step, which will maximise the sum of the n observations is sought. 



I - u - 

The design <0 which requires, nt  each step that play which maximizes the 

I expected value of the next observation is considered in particular. For 

the ease in which X and I have binomial distributions such that X under EL 

and X under HL have the same distributions and X under E~ and T under HL 

have the same distributions, the problem is known as the 'Two-armed 

Bandit'. Brief outlines of two methods of attack on the question of 

the optimal design for the Two-armed Bandit are given. It is a conjecture 

of Blaokwell'a that <s?o is the optimal design. By both methods this 

conjecture was found to hold true for small values of n. Each, however, 

appears to be too cumbersome in the general case to provide a full 

proof. 

" 

2.  Some Relations Between Baves Risks and the Kc 

Information Numbers. 

2.1 General Results. Of the two hypotheses, HL.  and B-, let EL be 

true with a, priori probability tf  and EL be true with a. Priori, probability 

1- Xf.    Suppose that it is required to decide which of the hypotheses is 

true, suffering « loss of one if the false hypothesis is chosen and no 

loss otherwise. Further, suppose that X and I are real random variables 

having distribution functions F. and G., respectively, under hypothesis 

H. and with the corresponding densities t.  and g. with respect to a 

eoamon measure, W, such that f.>0 if and only if g,> 0. An observation 

either of X or of I is allowed to assist in making the decision as to the 

Of course, if but one observation were allowed and one were interested 

only in comparing X and I for one particular value of X/,  the preliminary 

true hypothesis. 

i1 - ..             ....       .... 
• 
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decision as to whether to observe X or I, i.e., the design problem, reduces 

to computing the Bajes risk against £ when using Z, K,(C),  and that when 

I is used, Sy(^), and using the random variable corresponding to the 

smaller risk. Since one is not interested in such a strongly restricted 

comparison, this criterion will not yield a simple solution, unless 

V^-V*^ for a11 Xf*  or \W**iW for a11 v» (°* ?si)» m 
which ease the choice between I and Y 'a  clear. Furthermore, any 

criterion for choosing between Z and I should agree with this whenever 

one risk curve lies uniformly on or below the other. 

Considering the statistical games based on Z and on I as S-games 

([3l)> with Sj «&."? S_ the respective sets of risk vectors, the condition 

that RZ(^)^R«(^) for ail Lt  is equivalent to S^z^S•, i.e., any risk 

vector attainable using I can also be attained by using Z. Interest in 

conditions under which ^1 is further increased in view of results 

of Ulackwell's [4-1 that if such is the case, then regardless of the 

numbsr of actions open to the researcher or the loss function used, the 

set of risk vectors attainable with Z contains that attainable with I. 
I 

Let Rj< R- denote that B_(Tj. ) sRy((^) for all X, . Throughout the 

paper it will be found very convenient to consider . *=*• and this will 
l-c,. 

regularly be denoted by 7?„ 

Lemma 2.1. Two conditions, each necessary and sufficient, that 

I B^I-IR^) are: 
00 y m    CO 

(i)     f\in(u-^,0)dE(u)^ - j(^Mu-^,0)dF(n) ; 

oo *    ^ cp 

(ii)     f min(l-4- ,0MG(u)j - l\  min(l- ^-,0)dH(u) ; 
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» 

there E and G are the cd.f.'s of f2(x)/f,(x) under R, and S,,, respectively, 

and ? and H are the e,d*f,'a of g«(x)/g, (x) under E, and H9, respectively. 

Proof.    From the well known theory of Bayea solutions (see [3], 

Chapter 6), the Bayos risk against X? using I is given by 

(1) H-($) - T< f   f.(x)dV(x)+(l-^) 
^   Y f0(x)J    r

X f,(x)J 
f2(x)d^(x) 

t^>l'^ 

With >7 " -jfy   , this cen be written as 

t^Td* i-£ 

,„, W >; ~cT~r( 
t(x) 

f     f2(x)d^(x)-)^     /      f2(x)diH 
f2(x) 

fith   2(a)-        /      ^(xjdyd), 
Mx) 

(3) -A_.^    -JudB(u)-^j   dE(u) 
o 
00 

nin(u-« ,0)dE(u)    . 

With   E(u)-     J f9(z)d^(ac)    , 
f Jx) Z 

f7*7*u 

j &(*)->?  f J dP(u) 

00 

-   I nin(l- -J-,0)dF(a) 

o 
00 

- 

. 

• 
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With the analogous expressions for the risk associated with I, the 

conclusion is immediate. 

LflU 2.2.    (i)    Bj^M - ipT(£) if and only if 

where ^•('l*) is the probability, under H^ that in following the Baye? 

procedure against  £ with X, H, will be chosen. 

(ii)    If G(u)/u-*0 as u-VO, then ^(^W  -  \\(tf) it and only if 

o ^ < J o 

where */,,(Z?)  is the probability under HL that in following the Beyea 

procedure against Xf  with I, E, ?ill be chosen. 

Proof, From Equation (3) in the proof of Lemma 2.1, 

MS)      V- 
(1) 1^--^ " f (*•>?><«<*>  - 

Integrating (l) by parts yields 

tux,) ft 
(2) lT^-"^   - -J E^du      • 

o 

However,    E(u) -       J t,(x)&Wx) - l-(tfT(;£:).      Hence, 
f.(x)    l * x u 

FJx7 S i 

(3) 
MS) r7? 

«r From tha similar expression involving R^ conclusion (i) follows. 
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A parallel argument from equation (4) In the proof of Lemma 2.1 

S"jolri«i (.nnftlnninn M^}. noting that (l(u)• flLCr**-). 

Theorem 2.1. Two conditions, each necessary and sufficient that 

R^- Ry are: 

(i)    ^2^1 and g2^6l have the flame di8'briDU'bions onder Hj? 

(ii)     '2^1 and g2//,g'1 nave the 8ame dia*riDutiona onder Eg. 

Proof. The sufficiency is immediate from Lemma 2.1, To show the 

necessity, suppose Ry-" Ry, then for all ^0, 
00      A        CD 

(1) min(u-«,0)dE(u) = [ min(u->7 ,0)dP(u) 

o o 

Now, for any a>0, let 0_(u) - u min(a-a,0) and let -y (u) --n min(u-(a + "),0), 

n• 1,2,3,... . Then 
00 CD 

(2) f (0n(u)*7fn(u))dE(u) - f (0n(u)*^n(u))dF(u) 

for all n. Hence9 
n r 

(3) E(a)*  I (l-n(u-a))dE(u) - F(a)+  / (l-n(u-a)dF(u) 

a< u< a + ** a< u< a*~ n n 

Letting n->oo, E(a)-P(a), i.e., the likelihood ratios, f2/^ «"* g2/gp 

have the same distribution under R\. It follows immediately that 

tizi$)-  0^(£), since E(u)-1-<XX(JS-). HowBjU)- SO^Hl-*? )/Sx(£)? 

hence, Rj-R_ and <^j- o^  implies ^L" /5_, which is conclusion (ii). 

With these conditions that R_^ £_., attention is turned to the relation 

between the condition B—< Ry and the Kullbach-Leibler information numbers. 

The mean information per observation of X for discriminating between 

R^ and H2 when E±  1B true is defined by Kullbaeh and Leibler, [5% [6], to 

be 

3. 
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30 f,(x) 
.1.1)     1^1*2)-   f f^xjlog j^y dt(x)    ,   for 1-1, 

- oo 
and [• f«(z) 

(2.1.3) 1,(1.2)  - log -j^y *  (cO^^jyn 

6(60   ) 

Jx - (oy^HlU CXT-lLB1)    . 

and 

1^2*1)-    I f2
(x)logf(x7 d^(x)    '    fori"2' 

- oo 

The mean divergence between EL and H_ per observation of X they then 

define to be 

(2.1.2) Jx = Ix(l:2)+Ix(2:l)     . 

I_(ls2) and 1.(2*1) will be referred to as the K-L numbers for X. The 

S-L numbers and the divergenoe for T are similarly defined. 

It ia noted in passing that if the distribution of X is of the 

exponential type, i.e., f.(x) • j3(co.)e  , then 

<V ' ^2 
Thus, Jw is an interesting measure of the 'distance- between H, and EL 

relative.to the random variable X, being the product of two often 

considered measures- 

If 1,(1:2)> Iy(l:2) and I,(2»l)> Ij(2ll), one would say that, in 

the Kullbach-Leibler sense, X is the more informative. The question that 

arises is that of the relation between being more informative in the 

Kullbach-Leibler sense and being more informative in the sense of uniformly 

smaller- Bayes risks. It will be seen in the remainder of this section 

that the two are not equivalent, but that interesting relations do exist. 
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Theorem 2.2. B.-'R. implies equality of the corresponding K-L numbers 

for Z and for I. 

Proof. With E and F as defined in Lemma 2.1, 

f,(x> 
(1)     ^(112) - f fx(x) log j^y d t(r) - -J log udE(u) , and 

-co        2 o 

IT(l:2) - I g^x) log |^|y d^(x) « -| log udF(tt)  . 

-CD 0 

By Theorem 2.1, E-F and hence 1^(1:2) - 1^(1:2). 

In the same way, 

(2) 

9 f,W /r3w r 
f2(x) log ~^ d^(x) -     u log udE(u)    ,    and 

- 00 o 

CO - /_\ « 

Xx(2:l) -        g2(x) log ^jy d^(x) -   I u log udF(u) 

- CO o 

H8t.ce,   Ij(2:l)° 1^(2:1)  also. 

Theorem 2.5.    If L^L,  then the S-L numbers for Z are greater 

or  jqufll to the corresponding K-L numbers for I. 

Proof.    Again with E and F as defined in Lemma 2.1, 
op ~n, ~ 

(1)      |udE(u) - lim  I udl(u) - lim   J     f2(x)d^f(x) - 1 . 

o        7^ J 1^° f (x) 

00 

f udF(u) - 1. 

00 

(2) f jf(u)dB(u) - f ^(u)dF(u;  . 
J J 

Similarly, \  udF(u) • 1. Hence, for # any linear function, 

co co 

o 

By Lemma 2.1, 
00 00 

(3) J min(u-» ,0)dE(u) $  min(u->7 ,0)dF(a) 
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It is easily seen, then, that for any concave function, 0, 
00 00 
r       f 

(4) 0(u)dB(u) i  p(u)dr(u) . 

f. ° 
In particular, for 0(u) • log u, 

oo oo 

(5) Ijd'-Z)  - ~f log udB(u) > -] log udF(u) - 1^1:2) } 

o o 

while for 0(u) = -u log u, 

(6) T T •M2:l) - - n log udE(u) £ - u log udP(u) - -Iy(2:l) . 

Equations (5) and (6) yield the conclusion of the theorem. 

In the matter of converses to Theorems 2.2 and 2.3, no general 

theorems were obtained. In each special case investigated, equality of 

, the corresponding K-L numbers was found to be equivalent to equality of 

the risks, but a uniform inequality of the K-L numbers failed to imply a 

uniform inequality between the risks. 

2.2 The Case of Normal Distributions. Attention is now turned to 

the particular case in which both Z and I have normal distributions under 

each hypothesis. Since, for normal distributions, both the risk function 

and the K-L number• are invariant under affine transformations, there is 

no loss of generality in treating the situation given by the following 

diagrams 

I       1 

Hx   1(0,1)    1(0,1) 

H2    NCfi.cT
2) H(m,v) 

2 
where U. > 0, m> 0, and (p >v. 
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The K-L numbers for X are: 

2 

(2.2.1)      M1-.2) -J[log (T2--!*-^ *  -tf^] , and 

Ix(2:l) - |[log -Jg -1* <T
2+ ^  • 

Those for Y are, of course, the same with the obvious substitutions. 

Theorem 2.L.    The following three statements are equivalent. 

(i) Hj. - By. 

(ii)    Ml:2) - Ij(li2) and Ij(2:l) - 1^(2:1). 

(iii)    C"2 " • «nd f- " •• 

Proof. B7 Theorem 2.2, (i) implies (ii). further, (iii) clearly 

implies (i). Hence, it is necessary only to show that (ii) implies (iii). 

Assuming (ii) to be true, then 

sd + _i_.i .JL.jl. (1) log 

and 

•    J2  v  •    2 

(2) log -^ + (T2 "• " V m - 

o 
Suppose (iii) not true, in particular, that <j~   >•. 

Case Is  (T >1. Multiplying equation (2) by --  and adding to 

equation (l) it is found that u." is of the same sign as 

(3) A.^ .-r^.-v) = fv+l ! '.off -2— + A((T2,^) - (V+1) log -^" + "^2 -l-O^ + T  - 

But A(v,v)=0 and -^-5 Attf^r) - -*s (<7^-"»)(l-(T2) < 0. Hence u.2< 0, 

a clear absurdity. 
• 

Csse IIs  <r*ll- Maltiplying equation (?) by - -^=- «nd adding 

2 ^ 
to equation (l) it is seen that m is of the same sign as 

U) B( (f^v) - (<72 * 1) log-^+l-^-^+v. 
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(v,v)= 0 and —&-j Bttf^v) - (log J - J)-(log -\ -  -^), which is 

negative, since log x-x is strictly decreasing for x>l. Hence, a similar 

2 
contradiction is reached; m £0. 

In either case, it must be concluded that if (ii) is true, then 

tf"~ = v and, aa an immediate consequence, m" fJ.. 

It is noted in passing that the same line of argument yields the 

.2 Corollarr; For •< (f  , ^(1:2)^1^1:2) implies thht ^(2:1) > 1^2:1), 

while for •> <r2, Ij(2:l) > Ij(2:l) implies that 1^1:2) > 1^1:2). 

For a further analysis of the case of normal distributions, assume 

(T"  and /x fixed, <f> 1. and consider the (v,m ) plane. One can 

immediately determine the region in which 1^(3:2)> I_(l:2) and that in 

which Ij(2:l)> Iy(2:l). From equations 

(2.2.1) Ix(l:2){^ }lT(l52) 

if and only if 

(2.2.2) m2 •£* } hx(v) - y(log <T2'* ^Hp -• log v-1 . 

^(2:1) | * \ 3^(2:1) if and only if 

(2.2.3) «2/ * \h2
(v) " H-2* <rZ~ l0g <f2i l0g T" V ' 

_2 2 
That h.(v) ^ ^(v) for v 5 <f   with equality only at •• (T is a 

consequence of Theorem 2.U and corollary. (It can be shown similarly 

that for •> <T , h2(v)<h1(T; for all v for which hjCvJ^O). 

Together with Theorem 2.3, these results yield the result that 

for •£ tf"2, 

(2.2.-4)      ffr,*2):!^ 1 RjJ^ijY,*2)!*2 * ^(T)} 

I 
» 

1 
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To investigate more fully the relation of ib««'3 two sets, in particular, 

to see if, perchance, they are equal, the risk functions must be computed. 

i 

From this point on, both v and o  will be assumed to be groaoer vhan ^. 

For the particular case under consideration, the probabilities of the two 

types of errors when using the Bayes procedure against £ based oc X, 

c/„ and i^v, are easily computed. 
A 

(2.2.5)       0^($> = MX2- (J^)2 > 2 log g%  \ Bj 

- i-M\*+~j[-\ <~-f- Vp?+((r2-i)iog ^^'JH^ ' 

where ^ "7~£~     ««* i* ifl to De tuiderstood that e^^)- 1 if 

^2 + ((^-ljiog ^2(T2 < 0. 

(2.2.6) ^x(^) - PrO2- (^)2  <   2 log ^ | E2)     . 

Since the distribution of -—^   under E, is the same as that of X under 

H.,, (2.2.6) can be expressed as 

(2.2.7) /3X($) -Pr(jX*-£-| <-§- ^^(^-Dlog^VlH^ , 

where again >7 * rjy  and it is to be understood that /&•-( £ ) - 0 whenever 

|>u2* ((j^-ljlog ^2(f2 < 0. 

Since M£ ) - £o<x( $ )+(l-"S )/*x(£ ), it is seen that for 

^•((T^mog (T2^2 S 0, Rj(^) -^ • The computation of 0^(5) 

and fiyKX<)  will clearly yield the same expressions as (2.2.5) and (2.2.7) 
2 t ° with the obvious substitutions of parameters. Thus, for m «-(w-l;log. y,  v ^ '< 

Rj(5) " ^. 
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2 
Lemma 2.3-  j£- Rj( £) < 1 for log 7|2>-(--^— • log (T2). 

Proof. It is first shown that I 

(3)    l^f - 
Thus L J 

2 

No* if log -^2 > -Hj~ * log ^~2'' thsa r-2* (^2-1)1°8 T?2^ > ° 

and therefore both o^(^)<l and $j(%)  > 0, which establishes the lemma. 

• 

if    7 Setting A-   fl/A,2*(<T2-l)log   y2^. 

1(     M   )2    1    (TV        ^£4      .  ^tf-A 

_l(-/iC)2_l_iL    ^JCA      .-p£k 
l3'    d^   fW '       £(1-$)A    Y2IP B Le e J  . 

From (2) and (3) one obtains, after some simplifications, that 

Si'ice >7 " T^r , the bracketed quantity can be written as 
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The preceding proof that -rsr ^viC)" °^TC^ )" AT(? ) for this special 

case is included as it illustrates a situation in which certain terns are 

shown to be zero. Similar situations will arise later and the method here 

used will be referred to. The fact that the derivative of the risk curve 

is so related to &.  and £ is, however, a very general result for statistical 

games with two states of nature, two actions, and a 0 or 1 loss function. 

The fact is essentially demonstrated by Blackwell and Girshick ([3l, 

Section 6.3) and from their discussion it is clear that a rigorous proof 

can easily be given the proposition that jrp- B("$ ) = c*(£ )- fi( £ ) whenever 

the left member exists (as it does almost everywhere). 

Lemma 2.3, and its analogue for 7, show that 

if log vf £ -(-£- 
+ log (f2) , 

(2.2.8)  V5 M d"*"1 

if log fl2  > -Hj— + log (T2)  . 
<r-i 

1 

And 

v 2 1 ^ y **    n * 

2      «2 

if log « s -(*j • log v) , 

_2 
if log 71    > -(*J • log v)  . 

From (2.2.8) it is clear that a necessary condition that &•£ £y is that 

2 2 
Jjj>  + log (f2 > ^ + log v , or 

(2.2.9)      «2 i h,(v) - (T-1)<-£- * log l£)      . 
' (T-l     y 

As a consequence of Theorem 2.3, it must be true that h,(v)^h1(v) 

for l£V«i (}•    Btt* ^ 1B easily verified by differentiation of h--h, 

that equality holds only for v- <; . Thus, any pair (v,m ) with 

h^(v)< m < h,(v) provides an example in which X is more informative in 

i 
l 
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the sense of the Kullbach-Leibler information numbers but 3^< Ry fails 

to hold. ! 

Thus far the results have been necessary conditions that R_^ Ry. 

The most restrictive of these is that m £h,(v). The principal result 

of the remainder of this section will be that m <h_(v) is also a sufficient i 
3 

condition that R_ ^ Ry. 

Lemma 2.4. For fixed v> 1, Ry(£ ) is a non-increasing function of I 

m for each Xf . 

Proof. From the expressions already derived for ^y and fiy,  it 

follows that, with L= *jj N mfc+(v-i)log ^ v , 

B /y v v-1     l+2      v-i  *•  V2 

(1) ^rff1 (-frg- - >() = -^   I   e   d*4  /     e * dt , | 

-JLJ-L        -•ff-i ! 

v-1 v-1 

L  1 /. _m_\2       L  JL /.  mv \2 

-L -L 

Let a^^b denote that a and b are of the same sign. Then, 

IL _JL r+    JS-\2 1 /.    _m_%2 
(2)   a5 W^dm"    c# e "^ s ]dt   » 

.ii(±,2vlL   v-l> 2<L    v-l>   +   1        2v(L + v-l' 

->| e 2        T"1    ) 

£ „Ju   /+_.2Z-\2 _lf4.__l_\2 

; 
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By a redaction paralleling that used in the proof of Lemma 2.3, the first 

term of the last mcshcr of (2) is found to be zero, while if the indicate** 

differentiation in the second term is carried out, the resulting integral 

can be evaluated and one finds that 
I 

_-L(L+JE-^
2  _Ju(L_iL)2 t 

-me - e ] 

Multiplying the first term on the right by 1 - **~ ,  (3^ can be 

reduced to 

since the remaining terms reduce to zero in the same way in which the 

first term of (2) did so. Since L> 0, it follows from (U)  that 

•4f- B_( tf) $ 0 and the proof is done. 

It can now be concluded that there are two non-negative single- 

valued functions, say 0, and 02> of v, for l^v^ q   ,  such that for 

• iW-^Jit  Bj ^ Ry and for m > fyv), Rj £ Rj. The possibility that 

0,^ 0 or that 02 s*00 *s not at this point excluded. 

Let 0 be a non-negative, differ en tiable function of v (v>l) with 

0(u ) " ^- . Now set m=0(v) and consider B-( ^ ) as a function of v. 

From equation (l) in th« proof of Lemma 2.4-, 

(2.2.10)  ^2TT (-J-^- - >|) = J -jL e 2v     dt-y J 
1     -i(t-vC)2    r

L -|(t-C)2 
e      dt , 

-L 
where 

ana 
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I 
Differentiating with respect to v yields the aquation , 

'• 

r   A    i   -*b<^>2    -J(t-o2 

The first tero of the right member reduces to zero  as in the preceding 

proofs. Then, cerxying out the differentiation indicated in the last 

term and rearranging, 

(2.2.12)  L      _JL/t ^y* 

-L 

J        -|(t-C)2 
-71   (t-C)e "     dt] 

-L 

. f _|^(t2.T2o2.T)e-^
(t-T°)2at . 

Evaluating the integrals in the first term and preceding in the same 

manner as in going from (3) to (/+) in the proof of Lemma 2.4, one has, 

1    f / 2 2 2  • ~Zv (t_7C) 
•—£—   (t -T*0 -v;e *v      dt . 
2v^fr ^ 

Or, 

I 

( 
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I 

(2.2.13)   £M?^S$   ."     ^      t."".."] 

2<^rfT   ^ 

where 
&   _    (v-l)rf'(v)-2Cf(v) 
dy 2(v-l)2^?(vT 

The second tera of the right member of (2.2.13), the integral, is 

negative for all rj, i.e., for all L^ 0, since for small L the integrand 

is negative and as L increases beyond the point at which the maximum value 

of the integrand is zero, the value of the integral increases monotonically 

to a limit whose value is easily found by a direct integration to be zero. 

It may be noted at this point that for §• " 0, i.e., for 

#(•) • ~o o (v-l) » the derivative -§- R-(C ) is negative for all Z,. 
(cr*-i)2 dV ^ 

Combined with Lemma 2.U  this yields 

2 

(i) Rr^Rv for l£v* (T2 and m2 * £—=  (v-l)2 , 

and 
2 

(ii) R-^H. for v > (T2 and m2 2: ^^? (v-l)2 . 

However, let 0 be the function h- defined by (2.2.10). It ip asserted 

that for this choice of 0 the right member of (2.2.13) is less than or 

equal to zero for all L>0. To show this, note first that with 0 • h_, 

2 
-r- • - 2 / ^\Q . How consider the right member of (2.2.13) as a function, 

^f, of L for L>0. tyO)- ^(+oo) - 0. Thus, to show that ty is negative 

for all L, it will suffice to show that there is an L1 such that y< (L)^0 

for 1<L' and ^'(D>0 for all L>L'. 



... 

(2.2.U)     ^(L) - ^ e 2v [g (v-l) |(L-vC)e2LC-(L>vC)^ 

+ L2^=I(e2LC+l)] I 

A- ^" [L(e2LC-l)-vC(e2^l)]^ (e2UJ*l) 

2 . Ujg (e2M+l) 

^L(e2^)-^(e2I*-l) ( 

.e2LC(L.lizc!) + L+llls! . 

Denote this last expression in (2.2.L4) by ^(L). Then 

tf'(D - e2I/J[l*2C(l-***£-)]• 1 , 

and 

(2.2.15) y"(L) - 4C2e2LC(L-vC) 

Prom (2.2.15) one  sees, then, that /"(L) is negative for L< vG and 

is positive for L>vC. Hence, ft   is conoave on the interval (0,v0) and 

convex on the interval (vC,+oo). But ^(0)«0 and Jt(+ca)  • +oo. Hence 

there is an L1 such that Q,  and therefore '-r', is negative for L< L" 

and positive for L>L'. In this wzy the proof is complete for the 
o 

Lemma, 2.5. For m -h,(v), v> 1, R^^) is for each t^  a non-increasing 

function 0:* v. 

Combining the results of Lemmas 2.3, 2.4., and 2.5, it is seen that 

the following theorem, giving restricted necessary and sufficient conditions 

for uniform inequalities between the risks, holds. 
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I 

Theorem 2.5. For l^v^ (f . 

i(v.n2> : Hj i Hj"^ - |(v,'/) t m* * h3(v) <j- . 

2 
For v^ <r > 1, 

j (v,m2) : Rj > Rj I  - -[(v,m2) : m2 £ ^(vjl- 

It would at this point be pleasant If a choice of 0 could be made such 

that for m - 0(v), • > 1, Ry(£ ) would be for each ^ a non-deereasing 

function of •, i.e., such that ^LJ > 0 for all L > 0. Two necessary 

conditions for such to be the case are immediate, namely, 1"(L)s 0 for 

all sufficiently larg<* L, and §• < 0. But from (2.2. Li), 

H"(L)^fJ (v-l)[(I^vC)e2W-(L+vC)vM£^ (e2LC*L)  . 

Now let - 5» (v-l)-P> 0. Then, 

f'(L) ̂  e2I/; £v^v -F(Ipi0) + I
2^! +p(L+vC)  ? 

2v    »\--ww#     2v 

and for given P and v this becomes and remains positive as L Increases. 

Hence, one cannot find a curve along which R„( X,)  is for each <£ non- 

decreasing in v, except the degenerate case v = (T^, where B_(^) is 

uniformly (in £.) non-decreasing as m decreases. 

Now by Lemma 2.3 there is a function, call it h,, such that for 

2 
1* •<; (T  , 

| (v,m2) * Bj i RyX - |(v,m2) : m2 > h^(v) "I  . 

From the preceding paragraph it follows that in general h,/tu, since 

for any point (•1,DL,) let B— be the associated risk curve (in the 
1 
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0 f 3 ^ 
obvious way) and let Bta.mr) - V (•,« ) : By > Hy V . It is asserted that 

the lower boundary of B(v, ,mt") does not In general coincide with the line j 

2 2 
of constant l(2:l) through (v^n^). Suppose it did. Let (v^n^) lie on 

the curve of lu, l<v.< iy".    Then for (v,m ) also on the curve of b^ and 

l^v<vn, one would have B_ > B—   > R». But this would imply that for • 

each £, Ry(^) is non-increasing in v, for ra "^(v). Since this has 

been just shown to be impossible, and h. > lu according to Theorem 2.3, 

it must be concluded that h, > h^ for l^v^ (y . 

Many of the interesting results of this section can be summarized 

2 
in the following way. For l£V£(j- , the four functions iu, h.,, h,, 

2 
and h. determine five sets: for m <, h , I  is more informative than I 

4 J 

both in the Kullbach-Leibler sense and in the sense that B— * R_; for 

2 
h, < m ^ h,, X is the more informative only in the Kullbach-Leibler 

2 
sense; for h, < m < h~. neither random variable is the more informative 

2 
in either sense; for tu £ m < h., I is the more informative in the 

2 
Kullbach-Leibler sense only; and for h, ^ m , I is the more informative 

in both senses. From the results and methods of this section it can be 

2 2 
verified that if v> Q    > 1, then for m £ h,, X is tiie more informative 

2     _ 
in each sense; for h. < m ^ hu, x is the more informative in the Kullbach- 

2 
Leibler sense only; for b- < m < h., neither is jiore informative in either 

2 
sense; for h, $ m < h,, I is the more informative in the Kullbach-Leibler 

2 
sense only, and for h_ £ m , T is the more informative in both senses. The 

function h, has not as yet been explicitly given. 

• 
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2.3 The K-L Sombera In Relation to Certain Classes of Distributions. 

Attention is nert- turned to another and Interesting point of view 

with regard to the K-L information numbera. Suppose that the densities 

under consideration are elements of a class, •} fwi toe,Dc, of densities 

positive on the same set. Assume that there is an Abelian group, T, of 

transformations of the domain of the f^'s end a corresponding group, T, 

of transformations of O such that if X has density ta>,  then for t£T, 

t(X) has density f_   - aft*1)^, that is, d4>(t-1x)- pc(t_1)df (x). 
t(o>) 

Finally, assume that given UX and co? in Q, there is a t£T such that 

_ Tf* ~  s 

Theorem 2.6. The K-L numbers are functions only of the transformation 

that carries f. into f~ and not of f. and f~ individually. 

Proof. Choose a t£T such that f2(x)-f1(t"x)u.(t
-1). Then 

1(1X2)-    f.(x) log  * —r-dtyx) 
J  x     :\ (t *x) udf1) 

I • 

- 00 

OP _ / \ 

- -log fUr1)* r fx(x) log —~— dvf(x) . 
-oo ~      fl(t s) 

To show that the value of the integral 1B a function of t only and does 

not depend on f., choose any f-E-f f^Tl and let f..(x)»f (s~ x) Ll(s ). 

Then, «rith y= s   x, t" y- t~ s" x- s~ t~ x, and (l) can be rewritten as 
oo _ / \ 

(2)      l(H2) « -log Lift"1) • ! fJy)log  9 .  d^(y)  . 
-%     f«(* V) - oo        o 

A similar proof holds for I(2:1) and the proof is complete. 
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i 

Whenever it happens that equality of the K-L numbers for I and for I 

Implies that the aame transformation that carries fn into t0  also carries 

g, into g-; it will follow elao that for some t£I, I and t(l) have the 
d 

same distributions under each hypothesis; this will be denoted I - t(Z). 

In such cases it is clear that equality of K-L numbers implies equality 

of riaks. That all the conditions on the group T given above are not 

necessary for equality of the K-L numbers to imply equality of risks appears 

immediately from the case of normal distributions where the group is not 

Abelian, the 'Jacobians' are not constants, and the correspondence between 

transformations and K-L numbers is not 1-1 but still, equality of K-L 

numbers implies equality of risks. 

Lemma 2.6. T * t(X) implies Hj- Ry and if the likelihood ratios, 

fp/f, and g2/g-i> are monotone in the same direction, then Ry" R_ implies 

that T • t(Z). 

Proof. The first statement is clear. Without loss of generality, 

let I and I have the common density h under H- end densities f and g 

respectively under R"2. It then suffices to show that f • g, for then the 

same transformation that carries h into f carries h into g. 

From Theorem 2.1, if Rj- Ry, then 

J h(x)dWx) - f  J h(x)df(x)  for all  pO 

Let 

ftxJ 
Mx) *>? 

. 
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Since all densities ere assumed positive together, it followb from (l) 

that JS- >T2. Henee 

(2)     jx: f(x) *^h(x)l - (ugWi^hW} 

If f(x ) > g(x ), then an yt  can be found such that f(x ) <  >jh(xQ) < g(xQ), 

contradicting (2). If f(x ) < g(x ), then a similar contradiction arises. o 
Therefore, f - g. 

As an example of such a class of densities and transformations as is 

being considered in this section, consider the P-distributions? 

(2.3.1) tjx)  -J^J x*-1 ."<**      ,   (oo>0) , 

with T- -f tc : tc(x) - cx\;     fl(te)- c> and tQ(co) "  ccO. 

Suppose the density of £ has parameter to   and that of Y has 

parameter   }\. under H..    Let o^* ^i» *ken 

(2.3.2) ^(1:2)  - Ottlog -£± o>1 - <*£lo8 t " X + al    ; 

and 

Ij(2il) - ot[log -jf 13—±1 - oCflog a- 1* Jl  . 

Equations (2.3.2) give the K-L numbers explicitly as functions of a, 

where a corresponds to the transformation carrying f  into f, .  If 
1      2 

\," b X-, then the expressions for the K-L numbers for I are given by 

(2.3.2) with a replaced by b. In the question of equality of information 

numbers, then, 

(2.3.3) ^(1:2) - Iy(l:2) if and only if log J - b-a j 

I f.   • and 
1^2:1) - Lj(2:l) if end only if log * = \ - A 
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Equality of information numbers in this case implies that ab(b-a) • Va 

1 ": 

I 

and hence that either (i) a-b, or (ii) ab- 1. If (ii) but not (i) 

holds, then log b- b - log v - v • This can easily be shown not to be 

true for b^l. Therefore a-b and an example is provided in which the 

relation between the K-L numbers and the group of transformations is 1-1. 

Also note that if the K-L numbers are equal then for some c> 0, A = cuX 

and A = c6CL, i.e., I and cZ hava the aame distribution. 

3.  Designs for a Binomial Testing Problem. 

3.1. The Problem. In this section consideration is given to specific 

design problems in which the random variables have binomial distributions. 

Again it is supposed that there are two hypotheses, H. and H„, with £ 

the a, priori probability that E, is the true hypothesis, and that one 

must decide which of the two hypotheses is true with a loss of one if the 

decision is incorrect and no loss if it is correct. There are available 

two random variables, X and I, having binomial distributions with 

parameters p and q, respectively, under H_ and parameters q and p, 

respectively, under H_. 

X   I 

($)   E^   p   q 

(1-&)   H2   q   p 

Suppose that the observations are independent, the total number of 

observations to be tak^n, n, is fixed, and that the cost of observations 

is independent of the true hypothesis, the random variable observed, and 

of the result of the observation. 
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The first problem considered is that of non-sequential designs, i.e., 

before experimentation it must be decided which of the observations are 

to be of X and which of I. 

The second problem treated is that of sequential designs, i.e., 

rules which for each j<n tell one, as a function of the information 

available after the j  experiment, which random variable to observe 

at 
on the j+l  experiment. 

In each case the principle of choice among possible designs is, 

of course, that of minimizing the Bayes risk. 

3.2. Non-sequential Designs. Since the observations are assumed to 

be independent, the non-sequential design problem reduces to determining 

for each v> the optimum number of observations of I. 

Let R ("t/) denote the risk against £ if X is observed r times and 

I n-r times. Assume for definiteness, and without loss of generality, 

that p>q and note that by the evident symmetry, R ("£)SE _ (l-£). 

Furthermore, there is no loss of generality if it is assumed that 

p(l-p) > q(l-q), for if not, one would, by interchanging p and 1-p, q and 

1-q, and X and Y, find oneself in the assumed case. 

As before, it will be convenient to consider 7)  " T_y" "tber *&&.  £ 

itself much of the time. 

For general n, the solution is characterized by a division of the 

interval [0,1] into intervals with the property that for £ in a given 

interval a certain number of observations of X, i.e., a certain value of 

i f.  . r, is optioal. In some of the intervals the optimum value of r Is not 

uniqueo 
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The general equation for the value of Rr(X,) is given by 

n   min(k.r) __.       „       -  B.r      (p
i"xd-p)xq""i"*"U-q)*"*'? 

(3.2.1)      yS>-£        ZI       (i)(S4^     r-ifl    ,1,-r---      ^ifl. 
M i-aa7^n+r) 13      (1"<1) p U"p;      (1"^ 

The preceding characterization of the solution follows from the fact 

that R    is piecewise linear for each value of r. 
r 

The turning points of R occur for those Xf for which the two quantities 

whose minimum is taken in (3.2.1) are equal, i.e., for 

7[ - (a)2r"n(^i^pjr "* . Since *HS} < 1> the flrst *«**»« !»*»*• occurs 

for that k and i which maximize k-2i, which is k- n-r and i- 0. Thus the 

first turning point of R is (*) (TJ~?)  , which is a decreasing function 

,  n-r 
of r. For all Jf such that 7^ < (J)1"^)  , R,(? ) - Xf . 

The functions R can now be compared for small £, or equivalently, 

for small 71 . 

(3.2.2)  Rr(^) "Xi       for all r and for y> $  (*) , 

R. (£) -C  for r<n        p    (   p   X * 
r T j 

Thus there is complete indifference for 0 < y, < (a)  and (a)  is the 
l  P       P 

left end point of an interval in which the unique optimum value of r is n. 

To push the analysis a bit further along the }j  axis, consider the 

equations giving the second segments of R . 

(3.2.3)  Rr($) -q
r(l-p)n~r^[l-prU-q)n"r-qr(i-p)n"r] . 

The intersection of these lines, for r<n, with that for rm n ooour at 
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- 

r 

• 

(3.2.4) 
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.£  (l-p?n-r-qn-r 

^r  pr  (l-q)n'r- pQ-r 

Now setting t-n-r-1, 7)< > >7r+1 if and only If 

/,  \t+l  t+1    „  /,  \t   t 
, x  t+1 >       t  t 

(1-q)   = p*      *    (1-q) - p 

Since l-q> p, both denominators are positive and one can obtain the 

equivalent relation 

[(l-p)t+(l-p)t-V...+qtlC(l-q)t"V(l-q)t_2P+...+pt3 

> [(i-q)t*(i-q)t"V...*pt][(i-p)t"V(i-p)t"2q2*...*qt] • 

Since adding (l-q)* / (l-p)*"*^* to the left side and (1-p)* zL  (l-q)t_V 
k-0 k-0 

to the r ight side will yield an identity, ^7«>>?_+1 i» equivalent to 

(i.p)t ^(i-q)*-V- d-q)*^* (i-p) (1-p)* ^(l-q)&-V- (l-q)'y (1-P)*"kqk > 0 . 
k-0 k-0 

This in turn can be written as 

(3.2.6)      22. (l-p)t"k(l-q)t_kt(l-p)kpk- (l-q)kqkl > 0 . 
k-0 

But (3.2.6) clearly holds, as p(l-p)> q(l-q), and hence, V is strictly 

decreasing in r. 

The intersection of the second segment of R with that of R , is at 
_ n n-l 

a n~l   a n 
71^  , • (7)   > {-)  • And since the second turning point of R occurs at 
(n-l   P      P n 

7l"  (p)Q" C§55) > >lr  and that of Rn_x is at ^ - {*)n~    > ^n-1, the 

solution for a somewhat larger range of >7 can be given. 
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(3.2.7)      For 0< n < (*)      there is indifference between all r's; 
*P 

for (a)"< 77 < (*) n is the optimal value for rj 

end for (fl)n~ < Yj < u n-1 is the optimal value for r. 

The value of n in (3.2.?) Is dependent upon conditions of the form 

P^l-pr^jq^l-q)*. 

Not only does the value of u vary with cases, but the optimal value 

of r in the interval having u as its left end point will also vary with 

cases. It would appear that in the attempt to gain a complete solution, 

one shortly becomes bogged down in a morass of special cases. 

Certain solutions for small values of n ware computed and are given 

below as they appear in relation to the 7) -axis for 0< 77 < 1, which 

corresponds to 0< £ < l/2. By the symmetry about ^ • l/2 noted before, 

the solution for all X,  can easily be determined from these. (I denotes 

indifference). 

P g 1 

optimal r: 
r{         0 

I    :    1    * 
fl         1 
P 

n " 2:    1 < (l-p)2*(l-q)2: 

1 1:2: optimal r  : :          2    : 

7      ° ®2   ; P             P 
fl A+p-q        1 
P 1-P*q 

1  > (l-p)2*(l-q)2: 

optimal r : 1:2: 1 :      0    : 
V             0 (S)2      a 

P               P 1-q 

• 



- 32 - 
if 

- 

3s   (l-p)2*(l-q)2<l-f : 

optimal r : I  :   3  s   2    ;   1   ;    0:3:2 s. 

or 

optimal r :I  s   3  s   2    :   1 : 3    :2s 

i   »    <P>3    <P>2   ffeti   *   SSS   x 

l2(*-2n)-n(l-n)Z . .l-n.2 according as    A- %•   SJZSIX ~P/      ^g greater or less than    (r-^) 
p2(3-2p)-p(l-q)2 ^ 

1-f <  (l-p)2+(l-q)2 < l*pq  : 

optimal r  si      s        3      :        2:3 :2s 

f    o    <*>3    <P>2    *    $=$i 

i*n< (i-pr*a-«r<i-i^5 < 

optimal r :I      s        3      :        2:3 :        2    :    0    : 

7 ° (P^<P^* P^° * 

where c = l-(l-q)Ml-P?2-2pq(l-P)   ^ 
l-(l-p)3-(l-qr-2pq(l-q) 

These are the solutions for what appears to be about half of the cases 

for n=3. 

Thus, for small values of 71  the solution has been found for all cases, 

while for the remaining 77'8 there is no apparent pattern and the solutions 

! 

« 
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(to say nothing of their computation) even for small n lead one to the 

conclusion that it is just about hopeless to seek a complete general 

solution. It should bs noted that the symmetric choice of the parameters 

above is clearly a help rather than a hinderance; nearly any choice of 

parameters will yield a similar morass of cases. The exceptions are 

those choices of the parameters for which, for tt" 1, R <R., or R >R.. 

In such cases, the optimum value of r is zero or n, respectively, for 

all n and %>. 

3.3 Sequential Designs. Suppose that there is a total of n experiments 

to be performed, or observations to be taken. Let £ denote the a, priori 

probability that H. is true and ^,. the a, posteriori probability after 

having observed the results of the first j experiments. Now to obtain 

the optimal sequential design one must decide after the j  observation, 

as a function of the information obtained in the previous experiments, 

which is contained in £,, and the number of observations remaining, 

st 
n-j, whether to observe X or I on the j*l  experiment. 

Let f (Xf) be the Bayes risk if the optimal sequential design for 

n experiments were used. If, now, n+1 experiments were contemplated 

and X were observed first, then the optimal design followed for the remaining 

n experiments, the risk would be 

(3.3-1)  g(X,n,^) = ^(p^i-frO^+ti-W 

^(i-P^i-S(i-^))((l-p)^(l-q)(l-c)) • 
f • 

If Y =*re observed first and then the optimal design followed for the 

remaining n steps, the risk would be 

r 
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(3.3.2) g(r,n,$) - fB(qv!^)p)(qV(i^)p) 

-V/(i-q)^p)(i^))((1-q)^4(1-p)(1^)) 

Hence, the following functional equation is obtained. 

(3.3.3)      fn+1(C) "" min(g(I,n,C),g(T,n,t))  . 

The design problem is to determine those Zf  for which g(X,n,^)< g(T,n, £), 

g(X,n, £) = g(l,n,C), and g(X,n, £) > g(X,n, £), respectively. If there 

were n+1 observations remaining to be taken, then for £, in the first 

set, X should be observed next, for X,  in the third set, T should be 

observed next, while for £. in the second set there is indifference between 

X and I, aince one would do equally well starting with either. 

For n~ 1, the sequential and non-sequential de.° "uc  coincide and f- 

is easily found.  In theory, one can then, by use of the equation (3-3-3)> 

compute f for any n. This method is so complicated as to be practically pro- 

hibitive. A method is given below for obtaining the sequential designs without 

having to compute each of the risk functions. Sven this method bogs down in cases 

as n increases; however, for given values of p and q, it would be possible to use. 

Now it is clear that f, is piecewise linear and it is concave. It is 

easily seen then that both g(X,l,^) and g(X,l,^,), and therefore f2, are 

also piecewise linear and concave. Furthermore, the turning points of 

g(X,n,£) are precisely those £ such that either r •fr_ y \      or 

(l-olf +(l-a)(l-E,} *8 a *urn*n6 point of f,. Likewise, the turning 

points of g(l,n, £) are those & such that either  y 3M- f )r>   or 

.' ,  \ t,3{ tfn){i- F )      *5 a twnl-ng point of ff-.  In terms of the variable W, 

~h  is a turning point of g(X,n,^ ) if and only if £'^ or T^ >?   is a 

m 
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turning point of f. and is a turning point of g(T,n, £) if and only if 

a Y or -13 10 is a turning point of f , . 

For n- 1, the solution can be expressed by diagram. 

optimal choice    :    I    ;    I    ; 
>?        o    ;    i 

Since the same kind of symmetry about ^ - l/2 is present as was noted in 

the preceding section, to give the solution up to ^ • 1 is sufficient. 

The turning points of f, are (in terms of yi ), q/p, 1, and p/q. 

Arranging the turning points of g(X,n, £) and g(X,n, £) in order, 

• 2 2 
one has, for q(l-q)  < p(l-p) , 

<« «***>• a:     s fei 

! 

for «(!.».5)' $£$£*^ 
2 2 

while if q(l-q)   > p(l-p)  , one has the turning points 

v.      (3)2 3 q(i-q?      i 
for g(I,n, £):      V         p p(l-p) 

for e(I'n> *>: 5^ Hq~ * 
In each case, these turning points divide the interval (0,1) into 

a  2 ri 
sub-intervals. If 71 ^ (*) and Z is observed, then #, - (:—5~) will 

(   P     2/ '     **1 
be less than q/p or less than ^ ^"P* according as the observed value 

P^(l-q) 
of X is 1 or 0. Since In either case >f-,£.q/p,  it would be optimal to 

observe I at the next stage. Similarly, if I were observed first, then 

>/n < 1 regardless of which value I assumed. Eence, it would then be 

optimal to observe X at the next utage. Now, since for independent 

observations the order is immaterial, the two risks must coincide for 

7j < (q/p) • In a like manner it is found that in each of the two cases 

which are distinguished by the ordering of the turning points, the interval 

whose left end point is q/p is also en istsrval af  indifference. Knowing 

that g(X,n,^) imd g(I,n,^) are each piecewise linear and ooncave, and 
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that they coincide at >! * 1 as well as on these two intervals of indifference, it 

is sufficient to determine the solution Tor n* 2. There are two cases for 

the solution 

(3.3.4)  For p(l-p)2 > q(l-q)2 « 

optimal choioe ; I  ;   I t I    ;   I ; 

->l o  (*)2  J  ajiza) 
1 P       P     PVJ--P/ 

For p(l-p) < q(l-q)  : 

optimal choice : I  :   X ; I  :  Y ; 

How the method for obtaining the solution for n+1 from that for n 

follows that given above with n" 1. From the turning points of f ; 

determine the turning points of g(X,n,t^) and g(T,n,£) and arrange them 

in order (considering the necessery cases). Determine those >5 for which 

both * y)   and -^ >f  He in I- or I-intervals of the solution for n; 

determine those ri  for which both a "*)   and j^ •»   ne either in an X- 

or an I-interval of the solution for n. The intersection of these two 

sets will be the indifference intervals in the solution for n*l. From this 

information, the order of the turning points of the two functions g(X,n,£) 

and g(T,n,£), and the concavity of these two functions, most of the solution 

for n+1 can be inferred. For n= 1, the entire aolution for n"2 is determined 

with no further work, but for most of the cases for larger values of n, the 

two functions g(X,n,£ ) and g(Y,n,£) will have to be computed and compared 

at a few isolated points. 
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It is the computation and comparison of these functions at isolated 

points, AS well as the multiplicity of cases for larger n that makes even 

this method imperfect for obtaining general solutions. However, for given 

values of p and q this procedure could be used to determine the optimal 

design for moderate n without undue difficulty. 

This section is concluded by giving the solution for n" 3 after 

first remarking that the usefulness of the method is not restricted to 

problems in which the parameters are symmetric. 

(3.3.5)  For p(l-p)2 > q(l-q)2 and p(l-p)3 < q(l-q)3 : 

optimal choice : I  :   X  *   I    : I   : I  :  Y : 
o 

< V   V   p2(1.p) P pTI^T  i-q 

For p(l-p)2 > q(l-q)2 and p(l-p)3 > q(l-q)3 s 

optimal choice : I  ;   X   x  I : I :   I ;    I : 

For p(l-p)2 < q(l-q)2 and q2(l-q)3 < p2(l-p)3 : 

optimal choice : I  ;   X  : £ i_ J ;    I : 

f V        V     PTI^    p2(1.p)    P    pTTpT       x 

5 5 9 1 5) 1 
For    p(l-p)    < q(i-q)      and    q (i-q)-   > p*(l-p)-   : 

optimal choice t    I      :       X      ; I ; I    t   1 tit 

11-p-)2- 
(l-q)2(l-p-q)-p'(l-p) 

where   A - fr-pVWqHfo-q)      . 
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4..  Some Non-truncated Design Problems. 

In the preceding sections attention has been focused entirely on 
i 

design problems in which the sample size was fixed. A problem in which • 

experimentation is terminated by a sequential stopping rule will now be 

considered. ' I 

A.l. A Mixed Bandom Walk. Suppose, as in Section 3, that the two 

random variables, X and 7, have binomial distributions with parameters 

it 
under the two hypotheses, EL and EL, as given by: 

X   I f 

(r-)      Hx  p   q 

(l-£ )  H2  q   p    (p>q, p(l-p)>q(l-q)). 

Again, % is the a priori probability that H, is the true hypothesis 

and it is given that one must decide which of the hypotheses is the true 

one with losses as described in the previous sections. 

Let an observation of X and an observation of T have the same cost. 

A design is now sought which will minimize the expected cost of achieving 

a Bayes risk from the terminal decision of at most a fixed amount, r. This 

is equivalent to finding that design which will minimize the expected number 

of observations required to move the § posteriori probability for EL to a 

position either in the interval [0,rl or in the interval [l-r,l]. 

Let Km  £ and X, denote the a. posteriori probability for H. after 

having made the first J observations.  It will be convenient to consider 

the problem in terms of the variable tf * log 70  = log A . Then let 

• 
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a - log | 

b - log £r , and 

A - "log £= 

1-q 

r 
1-r 

Let n denote the smallest value of j for which either C-»£r or 

£.> 1-r. It is seen there are two random walks, both on the ft  axis 

with boundaries at A and -A, one of which is determined by the results of 

observations of X and the other determined by the results of observations 

of I. After having made j observations one finds that the walk has 

arrived at the point $,. Row the choice must be made as to whether 

it is better that $J+1 should be determined by an observation of I or 

of I, i.e., whether the next step should be taken in the X-walk or in 

the I walk. A rule is desired prescribing for every situation which walk 

should be taken in order to minimize the expected value of n. 

st 
If at the j+1  step, X is observed, then 

$.*a with probability p under H1 and q under EL, 

U.i.i)  # . - - 
J      £L-b with probability 1-p under H., and 1-q under H0. 

Letting E. denote expectation when X is observed, it follows that 

U.1.2)  BjC^j+l" ^l1 " P l0g I  ^1-P>1°8 I=q " h{li2)> 

V*j*r tfj'V "q log q +^1-<i)]Loe fej - -V2:1)» 

and   V^J+1-^jl-   Cj^x(l'2)-(1- ^)IZ(2:1) -   ^-1^2:1), 

Since the divergence is always positive, *»C#4+v- 8«^ 
is an increasing 

function of $. and is zero for 

» 
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#      1.(2:1) 
U.1.3)     ^ = i-J;  - -*-3—       ,   i.e., for 

# Ij(2:l) 
'9   - lo« ^ii2T       * 

Similarly, if I is observed, then 

U.1.4)  &»i - " 

$*-a with probability q under H. and p under H2, 

>0.+b with probability 1-q under H, and 1-p under H2- 

Also 
i_f 

U.1.5)      Wr ^^Hl] " * log \ +^-q)lo8 J5J - Ix(2:D, 

Wr JjIV - P 
loe p +(i-p)i°g £j " -^d'2), 

and Vtfj*i-V" Vx_Ii(l!2)- 

Hence, E_[ $*••]" $.1"! i3 also an increasing function of ft t  and is zero for 

Ix(l:2) 
U.1.6)      ^ - •* J   - C  , i.e., for tfj - # • 

To verify that <y*>0, i.e., that 1^(2:1)< Ij(l:2), let 

0(p) - Ix(ls2)-Ix(2:l). Then 

0(p) a (p-q)log J *(2-p-q)log ^ , aid 

0«(P) - ft*p>(p-q)    . 
P
2
(I-P)

2 

With p>q and p(l-p) > q(l-q), then l-q>p>q and q< l/2.    Hence, 0 is 

negative and concave for p< q; «ero «t p- q, convex and positive for 

q<p<l/2, and concave for p>l/2.    But 0(q)" log —* > 0.    Therefore, 

0(p) > 0 for l-q>p>q. 

i 
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Therefore the $   axis can be divided into four parts and on them one 

•ill have. 

u.1.7)   -Sjttfj+rtfj1 >-ytfj*i-#j] > ° fc* -A<#j<-tf*» 

| V8j*l-aj>>-Vtfj*r8jl>0     ^r    0< 3j<J*, and 

• 

Thus, for ^",>0 the X-wald yields an expected step greater in magnitude 

that the Y-walk and the expected step is in the 'right' direction, i.e., 

towards the nearest boundary, A. For ^4<0, the T-wald enjoys the same 

advantage, the nearest boundary being -A. 

These considerations .lead to the conjecture that, at least for a small 
st relative to A, the optimal de3ign is to take the Z-walk on the j+1     step 

when   $. > 0 and the Y-walk otherwise.    (It should lie remarked that if 

p(l-p)< q(l-q), the same results will hold with Z and T interchanged). 

Now let Zoo denote that design which requires that Z bs used at 

each step and loo that design which requires that T be used at each step. 
I Denote by E[n|Zco, ()',H.l the expected number of steps in the Z-walk with 
I 

$ as its starting point when H. is the true hypothesis. Using Wald's 

well known approximations, 

! 
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A- tf-2A r-sS ( 
(4.1.3)      B[n|Zoo,0,H ]= *      -1 J     , 

1 p log£*(l-p)log^ 

( 2At    U+dH^ 

BCn|loo^,H23-  L f       * , 
2 qlogJ*(l-q)log*J 

A- ff -2A 
(-e-2At.9-(A^)t 

2At 1 
1 -(qlogf •Cl-q)log£*) 

f -<cau   -(A'-tf )u 
A- 8<-2A j e        "9 

q 

-2Au 
.2. 

a*-a )ni 

5   1 
2 -(plog;*(l-p)log^J) 

ulog^ ulogr^ 
where u/0 satisfies    pe q +(l-p)e q. - 1, 

t log | t log —^ 
and t/0 satisfies    qe q •(l-q)e i_q - 1. 

It is easily seen that u"-1 and t= 1.    Then recognizing the 

denominators in the above expressions as E-L numbers, it follows that 

(4.1.9)     B[n|loo,^>E[n|loo,^] 

- T, {BCniloo, ^,H1>E[n|loo, JC^il-Cl-Q) ^E[n|Ya>, tf^l-BCnlloD,}* J^il 

II(li2)-L(2:l)     ( -2A    -A-tf 2A JL+B    1 
- ^(1:2)1,(2:1)     ]***'» \-2ml      ^ ?>fr»-2i *-fc-) J   - 

Noting that the first factor is positive, then by adding 1-1 to the 

fraction in the last term and rearranging, it is found that 
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(4.1.10) l[n|Yoo,tf ]-E[n|Xco,$ ] 

U.l.ll)     ty*(tf)-Uel 

0^7     e2A-l " 1+e*   (.*-l " e^-l 

_  2     ,§      ja \ _ 1-ft      (S ^  «. «—L=l\ C 
07? V2i-1     e2A-l        <*a*)4       e^-l e2i-l    j     ' 

Simplifying (4.1.11) and removing positive factors yields 

(4.1.12)     4*(tf> r£, (2*eA>e"A)^-(2*eA+e"A)e
2A+e

33, . 

At #"0, the right side of (4.1.32) is positive. At # - A, it equals 

e +2+e -2e , which is negative at least for A>leg | . By differen- 

tiation the right side is found to be decreasing in an interval [0, 81') 

and increasing for # > Jv'' Hence, <Va(#) is first positive and then 

negative as 8   increases from 0 to A (A> log jj); i.e., fy  is first convex 

and then concave. It remains only to show that j'' (0)>0 to assure that 

W)>0 for Oi^i*. 

Y«(0) rtr 4* e2A(A-2)*2AeA»2Ae"A-e"2A(A^2)    . 

^^u-^)-(i-^)(A*3)-2At;»".;?""   *2A(i-s)^r1 

e     -1 e   -1 

mk+tfmn f-2A   -A-tf       >•*.•,") 
- -tf+A(2^-l)*2A ±—-± -2A^ 3*-^  - t^j-A  C       . 

e   -i )     e     -1 e   -1   J 

It can be easily verified from (4.1.10) that the difference is aero 

for $ • 0 and "$ - A.    It will be shown to be non-negative for 0^ tf £ A. 

J 
Noting that ^ - 8 %*  and denoting the last member of (4.1.10) by 

l+e° 
4^(tf), then 



- u- 

i - 

Denoting the right member by S(A), successive differentiation shows that 

S(0)-S'(0)-S"(0)-S"'(0) while the fourth derivative at zero is positive 

for all A^O.    Hence it can be concluded that  (JJ'(0)>0 for A>0 and by 

the evident symmetry in the problem it follows that 

C > 0   f or    # > 0 
U.1.13) E[n|loo,tf >E[n|Xoo..oA 1^ 

I < 0 for  ^ < 0 . 

st 
Thus the design which requires the use of X at the J*l  step if 

$.> 0 and I if fi.< 0, coincides with the design requiring the use of 

the random variable corresponding to the smaller of E!"n|loo, $.1 and 

E[n|Yoo, #,"!. It also coincides with the following design given in terns 

of the I-L information numbers. Let Jj(£)- ^Ij(l:2) + (l- £)lx(2:l). 

Then JY(^)" ^II(2:1)*(1-^)IX(1:2) and Jx(£) > JY( $) for C > l/2. 

Hence, the design just described could also be expressed by the rule: 

st 
at the j+1  step use the random variable corresponding to the larger 

of the numbers J-( "£.) and Jy( £,). 

Denote this thrice-described design by M. While M has not yet been 

shown to be the optimum design, it can be shown to be better than either 

Zoo or Too. This comes as a special case of the next reauii, which 

concludes this section. 

By a stationary dedign will be meant a design in which the choice at 

the J+1  step i* a function only of the a posteriori probability after 
XL 

tue j  step. £.. 

Lemma 4.1. Let X and T have densities f. end g., respectively, under 

hypothesis H^ suoh that both log f,/f, and log g^/gi assume positive and 

negative values with positive probability. let D., and D2 be two stationary 

. : 

I 
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,8t designs and D that design which requires, at the J+l      step, the random 

variable corresponding to the smaller of B[n|D1, #4"< and E[n|D2, #.]. 

Then E[nlD, aismini'BCnlDj^,^ ], B[n B2,3 ]\. 

Proof.    For any set K in the interval [-A,A], let fTdenote its 

complement in [-£,£!.    Let 

(1)     P± - (j :    for  #4- 3*, Dj_ requires Z at the j+l8t step V. 

Let 
Cf,U) 

Ti( v ' ^xMi-t^x)     ' and 

TX(C) 

(2) KCniD^tf ] -• 

(3) H(tf) 

,    where    8  • log v v' 

l+EyCnlD^T^tf )1      if        tfgT^ 

l^[n|D1,TI(S')]      if        tfef*. 

Let H(^)-ain^B.[n!D1, 21], B^CnlD^ 8*]} then 

B^CnlD^S ]       for      ^e®, 

EJnlD2,3*]       for        #£®, 

l+*tln\*v*x{#)-\     for      tf^nCtDuP^®, 

l+B^[n|Di,TT(a')]     for       tf E f^f) <£>U P2 fi© 

Now let r-   P.nCEJU^O®.    Then 

1+E8[n D,TX(tf )] 

l^Ln D,Tr(2f )1 

Then if one sets G( tf ) - H( tf )-SiniD, $ ], 

B?[G(TX(^))]       ?jeri 

(4) BCn/D, tf ] 

(5) G(tf) > 
•^a(ix(«))1      "ytf. 
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Sow it is asserted that G> 0, for suppose that it assumes its minimum 

at $ . Then 

(6) G(tfo) -V 

I I vo(Tr(*o>)1      *°er* 
But for any random variable, Z, if E[Z"|-min Z, then Z-mic Z with 

probability 1. Therefore, G( tfQ) - G(TX( $0)) for tf e P . since 

f2(D 

(7) f.(X) 

Tx( «0) - t* log j^jy 

f,a. 
0(Vo) -G^Ulog^). 

to 
Similarly,  if   ^t P, 

g2(D 
Q<*0> •o(V1°«fcii7) 

f (X) g2(T) 
Since both leg .,(•*]   an?' log "   (j)    are negative with positive 

probability, it is seen that by a finite number of applications of the 

above reasoning a point 6'£-A can be reached such that G(# ) • G(o'). 

But G(tf )•• 0 for lo* I >&. Hence, G(# )>0. In view of the definition 

of G, the proof is complete. 

It is clear that the same analysis would apply to any finite number 

of stationary designs. 

5. The, 'Two-armed Baafll&i. 

5.1. General Results. The statistical problem which goes under this 

general title is that of finding a design which will maximise the sum of n 

independent observations in the following situation: let X and I be real 

valued random variables having c.d.f.'s F. and G., respectively, under 
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hypothesis H. (l" 1,2) and X,  be the a. priori probability that H» io the 

true hypothesis. The problem is to devise a sequential design which will 

maximize the expected value of the sum of n observations, each of which is 

to be an observation either of I or I. 

Let f.,  and g, be the densities corresponding to F. and G. with respect 

to the measure T. Let W ( £, «? ) denote the expected value of the sum of 

the n observations if £ is the a, priori probability for H^ end the optimal 

design, <$ , is used. If one observed I  first and then continued for n-1 

steps following the optimal rule, then the expected sum would be 
oo oo 

(5.1.1)  An " <r f  tf1(t)dvf>(l-^ ) f tf2(t)d^ 

- CO - 00 

r°        £f,(t)        * 
JVi<gfl(t)4i-S>f2(t)- <* ><C'1(tMi-5>f2(t))d+. 

- 00 

Similarly, if I were observed first and the optimal rule followed for the 

remaining n-1 steps, the expected sum would be 
oo oo 

(5.1.2)  Bn - X,  ftg^tMY + U-i?) ftg2(t)d^ 

- 00 - 00 

•% 

Henoe, W^iJs* )-max (AQ,Bn). 

i naturh'i design to be considered is that which requires that one 

maximize step by step, i.e., after the j  observation the g  postertori 

probability, £}.,, is computed and at the next step observe the random 

variable corresponding to the maximum of j t( £ ,f.(t)+(l- &.)f2(t))d<f 

and ft( ^ig,(t)+(l- t'.)g2(t))d <f\ Denote this stepwise maximization 

design by tQ  . 
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Theorem 5.1, If the Likelihood ratios tJ*\ and g2/gl have tiie 8ame 

distributions under Ej and also under H2, then «fn is the optimal design. 

Proof. Since, 

r w f Ax) if I is observed first, 

(«  <?! 

V. 
1* 

i~r~ 52(x) 
if T is observed first, 

and Ihe likelihood ratios have the same distributions, the distribution 

of £, is Independent of which random variable is observed first. Hence, 

the expected value of the optimal yield from the last n-1 steps is indepen- 

dent of the choice for the first step. One can, therefore, maximise the 

expected sum of n observations by choosing at the first step the random 

variable having the larger expected value and continuing with the optimal 

design for the remaining steps. 

Since all the random variables are assumed to be independent, the same 

— § st argument shows that, given (,., it ie optimal to follow <f for the J+l 

step. 

An exaaple in which the likelihood ratios are distributed alike is: 

I       T 

H, 

H. 

H(0,1)    N(^,l) 

H(/A,l)   K(0,1) 

If the above example is modified to destroy the symmetry, e.g., 

I       I 

H *1 

H2 

N(0,1)    H(A,1) 

H(|t,l)   H(0,1)   (flf  A, U>0, ^>0), 
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then   jrf   is not optimal.    If it were, then for n- 2 and   <£ such that c 
(1-OM- " C h  there would be indifference as to the f:Lrat step.    If I 

is observed at the first step, then the expected sum of the two observations 

is 

(5.1.3)      (1- $ )\l •(!- $)/4 Pr( ^)\ < (1- ^)|i.| Ej)* £ * Pr( 5X ?» > (1- ^Jjji I *x), 

i lo,      CA     • M 

" 2    .. e dt . 

or 

co A 
(l-^)|Wl-t,)p        \    5^   e   2   dflift        / 2TT 

If, on the other band, I is observed first, the expected sun would be 

co 

(5.1.4)       Zh+Zh 

1      l 

.1 -h*«T&hr*l .1 
2 2^e   2df(l-^)p   | ^    •    fc    dt 

-co 

But since (l- ^)u • X<}\,  if X were optiaai there would be indifference 

as to the first step and henoe 

•  _*?.       /V2 _ii •   _£          V2   .£ 
(5.1.5)         fe   2 dt*    f    e   2 dt 

2                   °° 

dt 

f .A.        - <K 
2        °° 

which implies that   A- W.. 

5.2.    The 'Two-armed Bandit'  in the Binomial Case.    4 special oase of 

the Two-armed Bandit of widespread interest is that in which the random 

variables have binomial distributions with parameters given by: 

I       T 

Hx P        q 

H~ q        p 
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A second example in which the likelihood ratios are distributee! alike 

is furnished here in the case p+q= 1. Hence, for that ease, «/ is the 

optimal design. Indeed, it la a conjecture of Blackwell's that in any 

case •&   is the optimal design. 

Before considering the question of d  being optimal it will be shown 

that it has the desirable property of being consistent. 

Theorem 5.2. Following the design J&L,  the expected value of the 

average of the first n observations converges to max(p,q) as n—>-oo. 

Proof. Assume that p>q. Then, 

(1) if  *;>l/2, 

V*><> - VIB1)+In-A'«0vx- 1)+Vi<F^j'4>VX"0)} 
V v 

(2) if C < 1/2, 

y v 

where P^Z-c)- £P(Z- ejHjHl- $)P(Z= cjEj). 

Let a (2, «tfl)"r W„( 2. «?J-    Then a (C, d) is monotone increasing n^o     nn^'O n  ^     ^ 
in n and is bounded from above by p for all n.    Let a(^ , «JQ)" lim   a_( £> *d )• 

Since a._(&,^L) is convex and continuous in X,  for O^i^l, a( £,*!_) is 

also.    Further, since na ("S,^) satisfies (i) and (2), 
XX o 

(3)    a($fJ> 
y 

(p^iT' ^V1- 1>*«<p3ti^b' 4>VT" 0)» $ < ^ 

c, 
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Suppose that the minimum of a( ^., vf^) is assumed at K  > l/Z.    Then 

it also assumes its minimum at p^, /P (IK l)> £ . By iteration, it 

assumes its minimum at •  which tends to 1 as n-^oo. Henoe, 

C could be taken to be 1. If OP the other hand, £ < l/2, the analogous 

procedure shows that £^ could be taken to be 0. Thus, the minimum of 

a( Xtt \J)  is assumed either at 0 or 1. But a(0,«J )m a(l, J_)- P, which 

establishes the theorem. 

If one lets Z be the average of the first n observations then if 

w    is used, E(ZM)-*.p. Furthermore, E(Zr) ^ B(Z .) and it is seen that 

the sequence 4 Z   t- forms a lower semimartingale. From the results of 

martingale theory [71 it can be concluded also that Z —>.p with probability 1. 

5.3 Th« Question of Optimal Design. Compiny was joined with that 

sizeable group who have jousted with the problem of finding the optimal 

design for the Two-armed Bandit problem as described in the preceding 

*action. Efforts were directed to proving Blackweil's conjecture that 
o 

is optimal and, while not meeting with complete success, the belief remains 

that the conjecture is correct. A brief outline of two lines of attack . 

••* m **A     stnvt *»t *%A Ao  G*»<>4- 4 AM  £ 
UUUU       WUWAUUWW       t-"JSJ w J. -»•«*       y  • 

Let I <f denote that design calling for X first followed by the use 

of jCn  for the remaining steps. Consider I ( $,!.*/ )-f (K ,J>J ); it is 
>*• IB        O   IS        O 

equal to (2£-l)(p-q) for a- 1. The induction hypothesis was made that 

ths difference was positive for <£> l/2 for all a< n. In computing this 

difference for small values of n it appeared that the ease pn(l-p)< qa(l-q) 

gave the smallest difference. For £ near 1/2, but greater than 1/2, and 
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pn(l-p)<qn(l-q), yj   coincides with the rule, Vv, which requires that when 

au observation is a success (1 is observed) the sane random variable is to 

be observed at the next step, bat if a failure occurs (0 is observed) then 

at the next step observe that random variable which has filled the fewest 

times or, if the number of failures are the same, observe next the one which 

has succeeded the greatest number of times; in case of ties, observe X 

n«rt.  It is aasily »st*b!i"h£d by induction thst 

(5-3.1)      Wa(^,X/6-Wn(^,T*e) - (2£-l)(p
n-qn)  . 

Efforts were directed towards showing that 

at least for C   near 1/2 and greater than l/2, by considering the adjustments 

which would have to be made in play according to IK and 1f£, to make them 

coincide with play according to Itc    and T^ , respectively. For adjustments 

in 1^ required at points where HC called for I but 1^ called for X and 

» 

o 

for the symmetric points in adjusting the play starting with X, it was 

possible to establish that the adjustments were of the proper sign. For 

the other types of adjustments the attempt to prove thst the signs were 

such as would accomplish the proof was unsuccessful. However, it appeared 

In the work that the difficult adjustments did not arise for n$ 5 and that 

for h up to 8 they could be satisfactorily accounted for; hence; the 

conjecture holds for n<9. 

L  second attack was made along the following line. For £ > l/2 but 

near l/2, let k. be thst number such that if at least k, successes precede 

the first failure then the random variable which failed is observed at the 

next step; let k_ be that number such that if there have been st least kj+kj 
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successes before the second failure then the random variable which failed 

is observed at the next step; eto. Then the contribution to W (<£ ,!•& ) 

and to "" (^-,T^ ) from those sequences containing no failures, one failure, 

two failures, and three failures was oomputed and combined successively to 

obtain the expression for their contribution to JL(£ »xUL)-*« (£ ,lJ ). 
n     o  n ~   o 

From the early *o?k it appeared that an inductive pattern would persist in 

these expressions, as sequences oontaining more and more failures were added, 

which would allow one to write out W (^,1^ )-lL(& »*«L) in terms of the 
nT   o  n^   o 

k. and verify that it wss positive. Upon reaching sequences oontaining 

three and four failures the attempt to force the contributions into the 

previously noted patterns has been unsuccessful. 
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